Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
2.
Exp Eye Res ; 238: 109739, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042515

RESUMO

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Assuntos
Infecções Bacterianas , Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Neovascularização Patológica/metabolismo , Lesões da Córnea/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças , Álcalis/toxicidade
3.
Transl Res ; 262: 25-34, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37543286

RESUMO

This study aims to investigate the efficiency and the underlying mechanism of myeloid-derived suppressor cells (MDSCs) in corneal alkali burns (CAB). In the study, CD11b+ Gr-1+ cells from C57BL/6J mice bone marrow were cultured and induced. Cell activity and immunoregulatory function were assessed by flow cytometry in vitro. The optimal strategy of MDSCs therapy was assessed by slit-lamp microscopy, and flow cytometry in vivo. The therapeutic effects of MDSCs and the critical signaling pathway were investigated by hematoxylin-eosin (HE) staining, slit-lamp microscopy, flow cytometry, and immunofluorescence. The expression level of the NLRP3 inflammasome pathway was examined. The crucial biochemical parameters of MDSCs were examined by RNA-seq and qPCR to screen out the key regulators. The mechanism of MDSCs' therapeutic effects was explored using MDSCs with IL-10 knockout/rescue by slit-lamp microscopy, HE staining, and qPCR evaluation. The cell frequencies of macrophages and neutrophils in the cornea were examined by flow cytometry in vivo. The results demonstrated that the induced MDSCs meet the standard of phenotypic and functional characteristics. The treatment of 5 × 105 MDSCs conjunctival injection on alternate days significantly ameliorated the disease development, downregulated the NLRP3 inflammasome pathway, and decreased the cell frequencies of macrophages and neutrophils in vivo significantly. IL-10 was screened out to be the critical factor for MDSCs therapy. The therapeutic effects of MDSCs were impaired largely by IL-10 knock-out and saved by the IL-10 supplement. In conclusion, MDSCs therapy is a promising therapeutic solution for CAB. MDSCs fulfilled immunoregulatory roles for CAB by IL-10-dependent anti-inflammatory properties.


Assuntos
Queimaduras Químicas , Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Interleucina-10 , Inflamassomos/metabolismo , Queimaduras Químicas/terapia , Queimaduras Químicas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL
4.
Exp Eye Res ; 233: 109539, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315833

RESUMO

Alkali burn-induced corneal injury often causes inflammation and neovascularization and leads to compromised vision. We previously reported that rapamycin ameliorated corneal injury after alkali burns by methylation modification. In this study, we aimed to investigate the rapamycin-medicated mechanism against corneal inflammation and neovascularization. Our data showed that alkali burn could induce a range of different inflammatory response, including a stark upregulation of pro-inflammatory factor expression and an increase in the infiltration of myeloperoxidase- and F4/80-positive cells from the corneal limbus to the central stroma. Rapamycin effectively downregulated the mRNA expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), toll-like receptor 4 (TLR4), nucleotide binding oligomerization domain-like receptors (NLR) family pyrin domain-containing 3 (NLRP3), and Caspase-1, and suppressed the infiltration of neutrophils and macrophages. Inflammation-related angiogenesis mediated by matrix metalloproteinase-2 (MMP-2) and rapamycin restrained this process by inhibiting the TNF-α upregulation in burned corneas of mice. Rapamycin also restrained corneal alkali burn-induced inflammation by regulating HIF-1α/VEGF-mediated angiogenesis and the serum cytokines TNF-α, IL-6, Interferon-gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The findings of this study indicated rapamycin may reduce inflammation-associated infiltration of inflammatory cells, shape the expression of cytokines, and balance the regulation of MMP-2 and HIF-1α-mediated inflammation and angiogenesis by suppressing mTOR activation in corneal wound healing induced by an alkali injury. It offered novel insights relevant for a potent drug for treating corneal alkali burn.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Álcalis/toxicidade , Córnea/metabolismo , Neovascularização Patológica/metabolismo , Lesões da Córnea/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças
5.
Biomolecules ; 13(5)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37238701

RESUMO

PURPOSE: To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. METHODS: To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 µL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. RESULTS: Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. CONCLUSIONS: LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries.


Assuntos
Queimaduras Químicas , Opacidade da Córnea , Ratos , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Fator A de Crescimento do Endotélio Vascular , Álcalis/efeitos adversos , Hifema , Transcriptoma , Ratos Sprague-Dawley , Neovascularização Patológica , Citocinas/metabolismo , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019244

RESUMO

BACKGROUND: Corneal neovascularization (CNV) can be caused by chemical burns. Macrophages are involved in angiogenesis and lymphangiogenesis during CNV. The aim of this study was to investigate whether Wilms' tumor 1-associated protein (WTAP) is involved in macrophage recruitment and VEGF secretion via N6-methyladenosine (m6A) modification. METHODS: A CNV mouse model was established by corneal alkali burn. Tumor necrosis factor alpha (TNF-α) was used to stimulate vascular endothelial cells. m6A immunoprecipitation qPCR was used to determine the enrichment of m6A levels in mRNAs. The H3K9me3 enrichment in the promoter region of CC motif chemokine ligand 2 (CCL2) was detected by chromatin immunoprecipitation assay. The WTAP inhibition in vivo was performed using the adeno-associated virus. RESULTS: In the alkali burn corneal tissues, angiogenesis and lymphangiogenesis were promoted as CD31 and LYVE-1 expressions were elevated, and the number of macrophages as well as WTAP expression were increased. Under the TNF-α stimulation, WTAP promoted the recruitment of endothelial cells to macrophages by promoting CCL2 secretion. Mechanistically, WTAP affected the enrichment of H3K9me3 at the CCL2 promoter by regulating the m6A level of SUV39H1 mRNA. The in vivo experiment showed that VEGFA/C/D secretion of macrophages was reduced after WTAP interference. Mechanistically, WTAP regulated the translational efficiency of HIF-1α via m6A modification. CONCLUSION: WTAP affected macrophage recruitment to endothelial cells via regulation of H3K9me3-mediated CCL2 transcription. WTAP also affected macrophage secretion of VEGFA/C/D via m6A-mediated translation regulation of HIF-1α. Both pathways were involved in the WTAP regulation of angiogenesis and lymphangiogenesis during CNV.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Camundongos , Animais , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Macrófagos/metabolismo
7.
Exp Eye Res ; 231: 109466, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059215

RESUMO

Corneal alkali burn (AB) is a blindness-causing ocular trauma commonly seen in clinics. An excessive inflammatory reaction and stromal collagen degradation contribute to corneal pathological damage. Luteolin (LUT) has been studied for its anti-inflammatory effects. In this study, the effect of LUT on cornea stromal collagen degradation and inflammatory damage in rats with corneal alkali burn was investigated. After corneal alkali burn, rats were randomly assigned to the AB group and AB + LUT group and received an injection of saline and LUT (200 mg/kg) once daily. Subsequently, corneal opacity, epithelial defects, inflammation and neovascularization (NV) were observed and recorded on Days 1, 2, 3, 7 and 14 post-injury. The concentration of LUT in ocular surface tissues and anterior chamber, as well as the levels of collagen degradation, inflammatory cytokines, matrix metalloproteinases (MMPs) and their activity in the cornea were detected. Human corneal fibroblasts (HCFs) were co-cultured with interleukin (IL)-1ß and LUT. Cell proliferation and apoptosis were assessed by CCK-8 assay and flow cytometry respectively. Measurement of hydroxyproline (HYP) in culture supernatants was used to quantify the amount of collagen degradation. Plasmin activity was also assessed. ELISA or real-time PCR was used to detect the production of matrix metalloproteinases (MMPs), IL-8, IL-6 and monocyte chemotactic protein (MCP)-1. Furthermore, the immunoblot method was used to assess the phosphorylation of mitogen-activated protein kinases (MAPKs), transforming growth factor-ß-activated kinase (TAK)-1, activator protein-1 (AP-1) and inhibitory protein IκB-α. At last, immunofluorescence staining helped to develop nuclear factor (NF)-κB. LUT was detectable in ocular tissues and anterior chamber after intraperitoneal injection. An intraperitoneal injection of LUT ameliorated alkali burn-elicited corneal opacity, corneal epithelial defects, collagen degradation, NV, and the infiltration of inflammatory cells. The mRNA expressions of IL-1ß, IL-6, MCP-1, vascular endothelial growth factor (VEGF)-A, and MMPs in corneal tissue were downregulated by LUT intervention. And its administration reduced the protein levels of IL-1ß, collagenases, and MMP activity. Furthermore, in vitro study showed that LUT inhibited IL-1ß-induced type I collagen degradation and the release of inflammatory cytokines and chemokines by corneal stromal fibroblasts. LUT also inhibited the IL-1ß-induced activation of TAK-1, mitogen-activated protein kinase (MAPK), c-Jun, and NF-κB signaling pathways in these cells. Our results demonstrate that LUT inhibited alkali burn-stimulated collagen breakdown and corneal inflammation, most likely by attenuating the IL-1ß signaling pathway. LUT may therefore prove to be of clinical value for treating corneal alkali burns.


Assuntos
Queimaduras Químicas , Opacidade da Córnea , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Álcalis/toxicidade , Interleucina-6/metabolismo , Córnea/metabolismo , Citocinas/metabolismo , Neovascularização Patológica/metabolismo , Colágeno Tipo I/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Opacidade da Córnea/metabolismo , Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835513

RESUMO

Transplantation of mesenchymal stromal cells (MSCs) provides a powerful tool for the management of multiple tissue injuries. However, poor survival of exogenous cells at the site of injury is a major complication that impairs MSC therapeutic efficacy. It has been found that tissue-oxygen adaptation or hypoxic pre-conditioning of MSCs could improve the healing process. Here, we investigated the effect of low oxygen tension on the regenerative potential of bone-marrow MSCs. It turned out that incubation of MSCs under a 5% oxygen atmosphere resulted in increased proliferative activity and enhanced expression of multiple cytokines and growth factors. Conditioned growth medium from low-oxygen-adapted MSCs modulated the pro-inflammatory activity of LPS-activated macrophages and stimulated tube formation by endotheliocytes to a much higher extent than conditioned medium from MSCs cultured in a 21% oxygen atmosphere. Moreover, we examined the regenerative potential of tissue-oxygen-adapted and normoxic MSCs in an alkali-burn injury model on mice. It has been revealed that tissue-oxygen adaptation of MSCs accelerated wound re-epithelialization and improved the tissue histology of the healed wounds in comparison with normoxic MSC-treated and non-treated wounds. Overall, this study suggests that MSC adaptation to 'physiological hypoxia' could be a promising approach for facilitating skin injuries, including chemical burns.


Assuntos
Queimaduras Químicas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Medula Óssea , Queimaduras Químicas/metabolismo , Oxigênio/metabolismo , Cicatrização , Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614177

RESUMO

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Animais , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Soluções Oftálmicas/farmacologia , Álcalis/farmacologia , Pseudópodes/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/metabolismo , Modelos Animais de Doenças
10.
Exp Eye Res ; 226: 109312, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400287

RESUMO

C-X-C chemokine receptor type 5 (CXCR5) regulates inflammatory responses in ocular and non-ocular tissues. However, its expression and role in the cornea are still unknown. Here, we report the expression of CXCR5 in human cornea in vitro and mouse corneas in vivo, and its functional role in corneal inflammation using C57BL/6J wild-type (CXCR5+/+) and CXCR5-deficient (CXCR5-/-) mice, topical alkali injury, clinical eye imaging, histology, immunofluorescence, PCR, qRT-PCR, and western blotting. Human corneal epithelial cells, stromal fibroblasts, and endothelial cells demonstrated CXCR5 mRNA and protein expression in PCR, and Western blot analyses, respectively. To study the functional role of CXCR5 in vivo, mice were divided into four groups: Group-1 (CXCR5+/+ alkali injured cornea; n = 30), Group-2 (CXCR5-/- alkali injured cornea; n = 30), Group-3 (CXCR5+/+ naïve cornea; n = 30), and Group-4 (CXCR5-/- naïve cornea; n = 30). Only one eye was wounded with alkali. Clinical corneal evaluation and imaging were performed before and after injury. Mice were euthanized 4 h, 3 days, or 7 days after injury, eyes were excised and used for histology, immunofluorescence, and qRT-PCR. In clinical eye examinations, CXCR5-/- mouse corneas showed ocular health akin to the naïve corneas. Alkali injured CXCR5+/+ mouse corneas showed significantly increased mRNA (p < 0.001) and protein (p < 0.01 or p < 0.0001) levels of the CXCR5 compared to the naïve corneas. Likewise, alkali injured CXCR5-/- mouse corneas showed remarkably amplified inflammation in clinical eye exams in live animals. The histological and molecular analyses of these corneas post euthanasia exhibited markedly augmented inflammatory cells in H&E staining and significant CD11b + cells in immunofluorescence (p < 0.01 or < 0.05); and tumor necrosis factor-alpha (TNFα; p < 0.05), cyclooxygenase 2 (COX-2; p < 0.0001), interleukin (IL)-1ß (p < 0.0001), and IL-6 (p < 0.0001 or < 0.01) mRNA expression compared to the CXCR5+/+ mouse corneas. Interestingly, CXCR5-/- alkali injured corneas also showed altered mRNA expression of fibrotic alpha smooth muscle actin (α-SMA; p > 0.05) and angiogenic vascular endothelial growth factor (VEGF; p < 0.01) compared to the CXCR5+/+ alkali injured corneas. In summary, the CXCR5 gene is expressed in all three major layers of the cornea and appears to influence corneal inflammatory and repair events post-injury in vivo. More studies are warranted to tease the mechanistic role of CXCR5 in corneal inflammation and wound healing.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Queimaduras Oculares , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Córnea/metabolismo , Lesões da Córnea/metabolismo , Fatores de Crescimento do Endotélio Vascular , Álcalis , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inflamação/metabolismo , Receptores de Quimiocinas/metabolismo , Queimaduras Químicas/metabolismo , Queimaduras Oculares/metabolismo
11.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077171

RESUMO

Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Queimaduras Oculares , Ceratite , Álcalis/farmacologia , Animais , Antioxidantes/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Lesões da Córnea/tratamento farmacológico , Modelos Animais de Doenças , Queimaduras Oculares/tratamento farmacológico , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Inflamação , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/farmacologia , Superóxido Dismutase-1/uso terapêutico , Água/farmacologia , Cicatrização
12.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 330-338, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35988169

RESUMO

This study was to explore the inhibitory effect of bromfenac sodium (BF) / chitosan (CS) nanoparticles (NPs) on corneal neovascularization (CNV). 45 New Zealand white rabbits provided by The First Affiliated Hospital of Jinan University were randomly divided into a control group (group A, n = 15), 0.1% BF aqueous solution treatment group (group B, n = 15), and 0.1% BF/CS-NPs suspension treatment group (group C, n = 15). A rabbit corneal alkali burn model was established. The average particle size of BF/CS-NPs with different BF concentrations was mainly 341.6 ± 12.9 nm - 548.7 ± 15.4 nm; and the Zeta potential distribution was 24.3 ± 2.5 mV - 35.7 ± 4.3 mV. When the initial concentration of BF was 1.5 mg/mL, the maximum drug loading was 57.35 ± 5.26%. The area of CNV in group C was significantly lower than that in groups B and A, and the differences were statistically significant (P < 0.05). At 6, 12, 18, and 24 days after surgery, the mRNA expression levels in cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) gene were compared after standardized by ß-actin; group A had the highest expression level, followed by group B, and group C had the lowest expression level, showing statistically significant differences (P < 0.05). The BF/CS-NPs granules prepared in this study had stable physical and chemical properties and had a good sustained-release effect, and the release duration can be as long as 48 hours. BF/CS-NPs can inhibit the formation of CNV at different time points after alkali burn, and reduce the expression of VEGF and COX-2 in corneal tissue after alkali burn.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Queimaduras Oculares , Animais , Benzofenonas , Bromobenzenos , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/metabolismo , Coelhos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Med Case Rep ; 16(1): 298, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922868

RESUMO

BACKGROUND: The loss of limbal stem cells owing to either corneal burn or inflammation leads to the repopulation of opaque skin over the raw surface of the cornea. It has been proposed that reconstitution of oral mucosal stem cells over this raw surface will mimic the limbal stem cells and restore vision. The efficacy and safety of applying a sheet of cultivated oral mucosal cells as an autologous graft for corneal replacement were evaluated. CASE PRESENTATION: The study was conducted during 2014-2015 and involved a total of six patients, of whom three had suffered a chemical burn and three had Stevens-Johnson Syndrome (SJS). Oral mucosal tissue was dissected from each patient, seeded onto irradiated J2 fibroblast feeder cells for 14 days, and analyzed for quality and safety 1 day before being transplanted onto the cornea of the affected eyes. After transplantation, topical antibiotic and anti-inflammatory eye drops were instilled four times daily, and the patients wore contact lenses. Subjects were clinically followed for visual acuities and adverse effects at 2, 4, and 6 weeks, 3 and 6 months, and 1 year post-transplantation. Data were presented descriptively. Visual acuities in patients improved at 2 weeks post-surgery. However, two patients with SJS had corneal ulcer at 2 weeks postoperatively. At the 1-year postoperative examination, the eyes of two patients were in good condition with decreased vascularization and epithelial defect. CONCLUSIONS: Cultivated oral mucosal epithelial sheet transplantation in limbal stem cell deficiency had a favorable efficacy. In this study, patients with chemical burn had more clinical benefit than those with SJS. Trial registration ClinicalTrials.gov: NCT02415218. Registered retrospectively 4 Apr 2015 ( https://clinicaltrials.gov/ct2/show/NCT02415218 ).


Assuntos
Doenças da Córnea , Transplante de Células-Tronco , Queimaduras Químicas/metabolismo , Queimaduras Químicas/cirurgia , Técnicas de Cultura de Células , Células Cultivadas , Doenças da Córnea/cirurgia , Células Epiteliais , Hospitais , Humanos , Mucosa Bucal , Estudos Retrospectivos , Células-Tronco , Transplante Autólogo
14.
Exp Eye Res ; 223: 109190, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963307

RESUMO

Endogenously produced peptide growth factors such as keratinocyte growth factor-2 (KGF-2) and nerve growth factor (NGF) play a key role in the natural corneal wound healing process. However, this self-healing ability of the corneal tissue is often impaired in cases of severe corneal damage, as in corneal alkali injuries. In the present study, we investigated the clinical and histopathological effects of topical recombinant human keratinocyte growth factor-2 and nerve growth factor treatments in a rabbit model of corneal alkali burn. After induction of an alkali burn, 24 rabbits were divided equally into three groups: control group, KGF-2 group, and NGF group. Clinical parameters including epithelial healing, opacification, neovascularization and central corneal thickness were evaluated on the first (D1), seventh (D7) and fourteenth (D14) days after injury. Corneal histology was performed using hematoxylin/eosin (H&E) and Masson's Trichrome stains. Immunohistochemical staining for matrix metalloproteinase-2 (MMP-2), MMP-9 and transforming growth factor-ß (TGF-ß) was performed. On D14, the percentage of epithelial defect and opacity were significantly less in the KGF-2 and NGF groups compared to the control group (p < 0.05). There was no significant difference between the groups in central corneal thickness. In the evaluation of neovascularization on D14, the NGF group was significantly less vascularized than the control group (p = 0.011). Histological examination showed a significant increase in stromal edema and inflammation in the control group compared to both treatment groups (p < 0.05). There was also a significant difference between the NGF and control groups in histological evaluation of epithelial repair and vascularization (p < 0.05). When immunoreactivity of MMP-2, MMP-9 and TGF-ß was examined, there was a significant increase in the control group compared to the NGF group (p < 0.05). Taken together, both NGF and KGF-2 treatments were effective for early re-epithelialization and decrease in inflammation, opacity and neovascularization after corneal alkali burn. The inhibitory effect of NGF treatment on chemical-induced neovascularization was found to be superior to KGF-2 treatment.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Queimaduras Oculares , Álcalis/toxicidade , Animais , Queimaduras Químicas/metabolismo , Lesões da Córnea/patologia , Modelos Animais de Doenças , Amarelo de Eosina-(YS)/efeitos adversos , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Fator 10 de Crescimento de Fibroblastos/farmacologia , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/uso terapêutico , Coelhos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Cicatrização
15.
Ophthalmologie ; 119(9): 891-901, 2022 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-35925345

RESUMO

In the case of thermal or caustic burns of the ocular surface, loss of limbal epithelial stem cells leads to compromised self-renewal of the corneal epithelium. This results in permanent loss of vision. In these situations, transplantation of cultured limbal epithelial cells on an amniotic membrane or fibrin gel as substrate (Holoclar®) can help to regenerate the corneal surface. The required cells are obtained from the healthy partner eye, if available. Adult stem cells from other parts of the body potentially serve as alternative cell sources: hair follicles, oral mucosa, mesenchymal stromal cells, or induced pluripotent stem cells (originally, e.g., skin fibroblasts). The reprogramming of such cells can be achieved with the help of transcription factors. In addition, work is being done on biosynthetic or synthetic matrices, which not only serve as substrate material for the transplantation but also support the functional properties of these cells (self-renewal, corneal epithelial-typical phenotype).


Assuntos
Queimaduras Químicas , Epitélio Corneano , Queimaduras Químicas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Córnea , Humanos , Medicina Regenerativa
16.
Transl Vis Sci Technol ; 11(7): 9, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35819289

RESUMO

Purpose: To evaluate the efficacy of losartan and prednisolone acetate in inhibiting corneal scarring fibrosis after alkali burn injury in rabbits. Methods: Sixteen New Zealand White rabbits were included. Alkali injuries were produced using 1N sodium hydroxide on a 5-mm diameter Whatman #1 filter paper for 1 minute. Four corneas in each group were treated six times per day for 1 month with 50 µL of (1) 0.8 mg/mL losartan in balanced salt solution (BSS), (2) 1% prednisolone acetate, (3) combined 0.8 mg/mL losartan and 1% prednisolone acetate, or (4) BSS. Area of opacity and total opacity were analyzed in standardized slit-lamp photos with ImageJ. Corneas in both groups were cryofixed in Optimal cutting temperature (OCT) compound at 1 month after surgery, and immunohistochemistry was performed for alpha-smooth muscle actin (α-SMA) and keratocan or transforming growth factor ß1 and collagen type IV with ImageJ quantitation. Results: Combined topical losartan and prednisolone acetate significantly decreased slit-lamp opacity area and intensity, as well as decreased stromal myofibroblast α-SMA area and intensity of staining per section and confined myofibroblasts to only the posterior stroma with repopulation of the anterior and mid-stroma with keratocan-positive keratocytes after 1 month of treatment. Corneal fibroblasts produced collagen type IV not associated with basement membranes, and this production was decreased by topical losartan. Conclusions: Combined topical losartan and prednisolone acetate decreased myofibroblast-associated fibrosis after corneal alkali burns that produced full-thickness injury, including corneal endothelial damage. Increased dosages and duration of treatment may further decrease scarring fibrosis. Translational Relevance: Topical losartan and prednisolone acetate decrease myofibroblast-mediated scarring fibrosis after corneal injury.


Assuntos
Queimaduras Químicas , Doenças da Córnea , Lesões da Córnea , Corticosteroides/metabolismo , Álcalis/metabolismo , Álcalis/toxicidade , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Colágeno Tipo IV/metabolismo , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Lesões da Córnea/complicações , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Fibrose , Losartan/metabolismo , Losartan/farmacologia , Losartan/uso terapêutico , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Coelhos
17.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806082

RESUMO

Ocular alkali burn (OAB) is a sight-threatening disease with refractory ocular inflammation causing various blinding complications. Th17 lymphocytes account for the pathogeneses of the autoimmune disease and chronic inflammation, but their role in prolonged anterior intraocular inflammation after OAB is still unknown. A rat OAB model was established for this purpose. Anterior intraocular inflammation was observed in both the acute and late phases of OAB, and histological examination confirmed the presence of inflammatory cell infiltration and fibrin exudation in the anterior segment. Luminex xMAP technology and qPCR were used to evaluate the intraocular levels of cytokines. The levels of IL-1ß, IL-6, and TNF-α were significantly elevated during the acute phase. The expression of IL-17A gradually increased from day 7 onwards and remained at a relatively high level. Immunofluorescence was performed to identify Th17 cells. CD4 and IL-17A double positive cells were detected in the anterior chamber from days 7 to 28. Flow cytometry showed that the frequency of Th17 cells increased in both lymph nodes and spleen, while the frequency of Treg cells remained unchanged, resulting in an elevated Th17/Treg ratio. The present study suggests that Th17 activation and Th17/Treg imbalance account for prolonged anterior intraocular inflammation after OAB.


Assuntos
Queimaduras Químicas , Uveíte , Animais , Queimaduras Químicas/etiologia , Queimaduras Químicas/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ratos , Linfócitos T Reguladores , Células Th17 , Uveíte/metabolismo
18.
Curr Eye Res ; 47(9): 1266-1271, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35634710

RESUMO

PURPOSE: This study aimed to explore whether corneal cross-linking (CXL) could regress corneal blood vessels (CBV) and corneal lymphatic vessels (CLV) in alkali-burned rabbits. METHODS: A total of 80 rabbits 2-3 months old weighing 1.5-2.0 kg were randomly divided into four groups: CXL7 group; CTL7 group; CXL14 group; and CTL14 group. Then, 3% sodium pentobarbital 1 ml/kg and tetracaine eye drop 5 g/L were administered before surgery. NaOH 2 mol/L was topically applied to the central cornea to establish the alkali burning model. Then CXL was administered within 2 h in groups CXL7 and CXL14. Corneal opacity and edema, CBV and CLV volume, cluster differentiation 31 (CD31), and lymphatic vessel endothelial receptor 1 (LYVE-1) expression levels were analyzed on days 7 and 14. RESULTS: CXL reduced cornea opacity, CNV, and CLV volumes on day 7 in alkali-burned rabbits. However, CNV and CLV volumes were increased on day 14. CXL also showed down- and upregulation of CD31 and LYVE-1 expression levels on days 7 and 14, respectively. CONCLUSIONS: CXL effectively regulated CBV and CLV in alkali-burned rabbits. The transient angioregression and lymphangioregression induced by CXL may be potentially helpful in vascularized high-risk eyes.


Assuntos
Queimaduras Químicas , Opacidade da Córnea , Vasos Linfáticos , Álcalis , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Colágeno/metabolismo , Córnea/metabolismo , Opacidade da Córnea/metabolismo , Reagentes de Ligações Cruzadas , Vasos Linfáticos/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Coelhos , Riboflavina/farmacologia
19.
Invest Ophthalmol Vis Sci ; 63(4): 14, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446346

RESUMO

Purpose: The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods: A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results: Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions: FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Álcalis/toxicidade , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/complicações , Lesões da Córnea/tratamento farmacológico , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Células Endoteliais/metabolismo , Queimaduras Oculares/patologia , Fibrose , Inflamação/patologia , Camundongos , Neovascularização Patológica/metabolismo , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Inflamm Res ; 71(5-6): 577-590, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35415762

RESUMO

OBJECTIVE: Retinal ganglion cell (RGC) apoptosis is one of the most severe complications that causes permanent visual impairment following ocular alkali burn (OAB). Currently, very few treatment options exist for this condition. This study was conducted to determine the effect of 4-phenylbutyric acid (4-PBA) on endoplasmic reticulum (ER) stress after OAB using a well-established OAB mouse model. METHODS: Ocular alkali burn was induced in C57BL/6 mouse corneas using 1 M NaOH. 4-PBA (10 mg/kg; 250 µL per injection) or saline (250 µL per injection) was injected intraperitoneally once per day for 3 days before the establishment of the OAB model. The apoptosis of retinal ganglion cells (RGCs) was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the histological damage was examined by hematoxylin and eosin and immunofluorescence assay on retinal flat mounts. The key inflammatory response and the expression of ER stress-related markers in the retinal tissues were assessed by real-time PCR, western blotting and histologic analyses. RESULTS: 4-PBA significantly alleviated the apoptosis of RGCs and prevented the structural damage of the retina, as determined by the evaluation of RGC density and retinal thickness. Inhibition of ER stress by 4-PBA decreased the expression of vital proinflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and suppressed the activation of retinal microglial cells and nuclear factor-kappa B (NF-κB). 4-PBA reduced the expression of the ER stress molecules, glucose-regulated protein 78, activated transcription factor 6, inositol-requiring enzyme-1 (IRE1), X-box-binding protein 1 splicing, and CCAAT/enhancer-binding protein homologous protein, in the retinal tissues and RGCs of OAB mice. CONCLUSIONS: The present study demonstrated that the inhibition of ER stress by 4-PBA alleviates the inflammatory response via the IRE1/NF-κB signaling pathway and protects the retina and RGCs from injury in an OAB mouse model. Such findings further suggest that 4-PBA might have potential therapeutic implications for OAB treatment.


Assuntos
Queimaduras Químicas , Estresse do Retículo Endoplasmático , Animais , Apoptose , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fenilbutiratos , Proteínas Serina-Treonina Quinases , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...